NASA Grant NGR 33-022-125

) HEPRI,NTED FROM "“TECHNICAL APPLICATIONS PAPERS - NEREM 70"
N 70C 63 NEREM_COPYRIGHT 1370

USING APL TO INVESTIGATE SEQUENTIAL MACHINES

Garth Foster

Electrical Engineering Department, Syracuse University

i
Introduction

Designers of digital systems invariably encounter problems in which the sequence of
signal parterns is critical. At these times the creation of the correct finite state sequen-
tial machine model is required as a portion of the synthesis procedure. The tacility to exam—
ine a nurher of finite state sequential machines, to look at many prcperties of a single model,
or to examine a rumber of alternate formulations would be a useful tool for computer engineers,
logical designers, computer scientists, and teachers. The use of the APL\360 Terminal System
Yo provide such 2 tool allowing the researcher to probe finite state sequential machines is
b described in this paper. The collection of functions which are collected in a workspace at
present have been influenced by some time shared programs written by Thomas F. Piatkowski In
BASIC (3 programs) and FORTRAN on the Michigan Terminal System (1 programi. These were report-
ed in references [1] and [2] respectively, and following their design objectives aliows the
interested reader the opportunity to make some comparisons between the functions written In
APL and good implementations in these more traditional and widely available languages.

N74-71668

Unclas
30390

/99

Formally a finlte state sequential machine, M, is a 6-tuple M= <5, X, Z, §, 1, s°>,
where S is the set of states, X is the set of Inputs, Z is the set of Outputs; § Is the next
"state function, mapping orderec palrs of states and inputs into states; &6:5 x X + 5; and A Is
the output functicn, mapping ordered palrs of states and inpufs Into outputs, A:$ x X + 2; and
s, is the initial state, a distingulshed menber of S. It § and A are defined for all members
o? the Cartesian product S x X, we say the machine is completely specitied; otherwise the
machine is incomplete. If the machire has an output function A which 15 oniy a function of
the state then the model is a Moore machine model; otherwise in the most general form of out-
 put function it is a Mealy mocel.

in our formulation we will represent the set of states by the tirst ¥ integers, 1¥ In
ORIGIN 1 and the set of Inputs will be represented by 1P and the set of outputs by 1Q. The
next state mapping is represented by a variable which is a 2-dimensionec array cailed STATE
with a row representing the present state and the columns representinrg the states reached by
one of the P inputs. In @ similar manner we use 2 matrix, not surprisingly, named OUTPUT to
hold the output mapping. Thus pOUTPUT is N,P. .

Qur model thus deals with N,P,Q Mealy machines. 8y entering 0's appropriately in STAT®
or OUTPUT we will denote undefined next state or output mappings and thus include incompletely
specitfied machines in the model. How these functions currently relate to incompletely specif-
led machines will be covered later. Suffice It to say that the programs in (1] and [2] deal
with complete machines and so some functions described here deal only with compiete machines
tor purpecses of comparison.

INITIALIZE and PRINT
The tunction INITIALIZE provides a conversational way of setting ¥ and P and speclfying
TATE and OUZPUT with the option of not providing an output function should it not be of
importance, as for example, in checking to see if the machine is strongly connected. After
specifying the appropriate variables INITIATIZE calls PRINT to display the machine. PRINT
procuces as an explicit result an array of characters giving the mappings contained In STATE
and OUTPUT together with some formatting niceties.

At present states and outputs are represented as single characters taken from character
vectcrs ALPH1 and ALPE2 respectively. Thus for purpcse of display "don't care" states and
outputs are represented by - and states are represented by letters and outputs by hexadecimal
digits. The present restriction in dispiay then is N < 26 and @ s 16. Changes in PRIANT,
ALPH1, and ALPH2 would remove this restriction, and P<9 may be altered by changing PRINT.

USING AEL TO
QUENTIAL MACHINES (Syracuse

16 p

These functions are shown in Fig. |.

In passing we note that separate varlables were chosen to store the next state and output
mappings rather than storing both mappings as planes of a single array. This ls to provide
for the future when we will handie Moore type machine models wherein the output is an ¥
element vector rather than a matrix. At present we may handle this type of machine by the
artifice of having ail P columns of OUTFUT be ldentical.

(NASA-CR-136371)
INVESTIGATE SE

Oniv.)

Simulating 3 Finite State Machine

It is useful after having specitied a particular sequentlal machine structure to speclty
a starting state and then upon giving successive inputs to have the corresponding outputs dis-
played, perhaps with the option of having the current state of the machine displayed or not.

120-NEREM 70

The functlon SIMULATE performs this task, and its display together with a sample of its use
are shown ‘In Fig, 2. This function matches, for the most part, the output creates by the pro-
gram SIM I'n reference [1] (pp. 4-9).

SiM is written in BASIC and contains 72 statements. Among these statements there are 35
PRINT statements, 6 GO TO's, 9 If's, 5 FOR statements and 5 associated NEXT statements, 7 IN-
PUT, | LET statement, 2 DiMension, | END and | STGP statement. Since the value of variables
can only be changed by an INPUT or LET statement, most of the program is clearly printing and
sequence control. Moreover, the sequential nature of the problem denies exploitation of the
powerful array operators in APL. Thus, we should not be surprised when we find that to model
the same function in APL requires the |7 statement function SIMULATE, the 22 statement INI-
TIALIZE and the 8 statement function PRINT, for a total of 47 reasonably straight forward
statements. Still several advantages other than 8 siight gain in brevity are obtained in the
APL approach; these are: !) Modularity. The functions INITIALIZE and FRINT are usable in
their own right and in turn may and will te cailed by other functions; other programs in [i],
for example, duplicate the equivalent of INITIALIZZ (using 35-38 BASIC statements) at the
beginning ot each program. 2) Flexipility. Dynamic ailocation of memory and a greater flexi-
bility and convenience in input format reguirements allow the functions to be adapted to a
wider variety of machines. 3) General ity. The APL functions shown also accommodate the simu-
latlon of incompletely specified machines.

Strongly Connected Mactirnes

A sequential machine is rtermed strongly connected if tor any arbltrary pair of states
I,J, there exists some sequence of inputs which takes the machine from I as an initial state
to J as 2 final state. It is thus sufficient to be able to go from state | to any other state
and also to make a (muitiple step) transition from any state to state I.

in the implementatlon under discussion, this task Is performed by STRONG which is shown
In Flg. 3. To model the BASIC program STR of [1] we also show In Fig. 3 the APL function STR
which acts as caliing sequence to STRONG, INITIALIZE and PRINT.

We must comment in passing that due to the modular nature of APL, STR Is reslly not need-
ed; we may initiate the execution of INITIALIZE and then STRONG directly from the terminal and
although these are separate functions, both manipulate common global variables. The conven-
ience of having functions and variables pooled as resources in a workspace to be used whenever
needed |s & tremendous advantage of the APL Terminal System. In short we need only add the |6
statement function STRONG to those already described to check whether a machine is strongly
connected. Note that most of the work is done in STRONG[2] wherein we start with a set of
states, S, {Initially set to |} that we can reach from state | and then find all the states we
can reach with one more input, append that to §, sort the set of states, and drop out dupli-
cate entries. When that Iist has no new entries on it we have the Iist of states reachable
from state |. In a similar fashion STRONG(11] builds & list of states from which state | may
be reached by some input sequence. Before turning our attention to the probiem of minimiza~
tion, It should be noted that an added advantage of STRONG over STR written In BASIC in
reference [1] Is that STRONG lists all states which cannot be reached from state | as well as
all states which cannot reach state | rather than just the first state in lexlical order which
fulfllls one of these qualifications as is done In STR.

Minimization of Sequential Machines

The classtcal concept of minimization of sequential machines Is that of remving super-
fluous stetes so as to reduce the number of states in the state fable. A state Is superftuous
it it is equivalent to some other state where we say two states are guivalen? it the outputs
are equal for any input and if the pair of states reached under any input are also equivalent.

This relationship Is an equivalence which Induces a partition on the states of the
machine breaking that set up into a set of sets such that each of these sets or blocks of the
partition has no member in common with any other biock of the partition and such that any pair
of states within a block are Indistinguishable from one another in terms of input-cutput
considerations.

Since all states within a block have the same cutput for each input, each of the blocks
serves as a prototype for a state in a minimized machine. This solves the classical minimi~
zation problem providing the machine is completely specified. It is this procedure that has
been Implemented in the BASIC program MIN which aiso appears In reference [t] (pp. 17-24).

Unfortunately the concept of equivalence no longer holds 1f the sequential machine is not
completely speciflied. We do not intend this to be either a tutorial or a review of the mini~
mizatlon of incompletely specified sequential machines; the reader can refer to references 3],
[4], [5] or any other recent book on switching and automsta theory. However, to provide a
better understanding of the APL tunctions which follow, some additional definitions and dis-
cussion are required.

Minimal 1ncomplete Machines

When the speclfication of the machine is not complete, rather than equivalence of states,
we say that two states are compatible if for all Inputs, the outputs of the states are identi-
cal where they are both defined and where for any Input the next states reached by the pair of
states are compatible where both next states are defined. This relation between pairs of
states is reflexive and symmetric but not transitive. States which are compatibie by this
definitlon may be grouped into the largest sets such that each pair of states In a set is pair-
wise compatible and such that no turther state may be added to a set without destroying
compatidbility. The collection of sets Is called the maximal compatibles.

A set of sets, K = (B|, 82. cin, Bp), is called a cover for a set, S, of states It
P

1) Sr= 8

v
1= 1

NEREM 70-121

The cover | + it
or Is a se system

2 B 8 I

That 1s, no block may be a subset of any other block. Further, it a set system has the prop-
erty that for all {,j

3 B. n8,
¥]

then the set system is a partition which we have discussed above. Thus, every partition is a
set system but the converse is not true.

Relative to sequential machines, a set system (or partition) is closed or has the substi-

tution property if for any Bi ¢ K, we have G(Bi,J) EBJ' for any input J and for some block BJ.
of K.

Now, the maximal compatibles (equivalence classes) arising trom the compatibility (equl-
valence) relations detined on incompletely (completely) specified sequentia! machines are
closed due to the detinition of compatipility {equivalence) of states.

Moreover, it one finds the maximal compatibles for a completely specified machine, the
compatibitity relation becomes an equivalence and the equivalence classes are thus obtalined.
Thus, the minimization of 2 completely specified machine is a subproblem of incomplete machine
minimization, and the maximal compatibles soive the problem for complete machines.

On the other hand, for incompletely specified machines having the maximal compatibies (s
not sufficient for minimization. For while the maximal compatibles are ciosed, they may not be
minimal. A closed cover (a set system) may be derived by considering subsets of the blocks of
the maximal compatibles, and this serves as a definition of a minimal machine. This problem
Is beyond the scope of this paper and it is discussed at length in references [3], [45 and [5]
for example and an algorithm is given in (6] for a solution to this problem.

These methods have not yet been implemented In this workspace but we mention the problem
here to Indicate the direction of further development of the workspace. We also seek to
indicate that the algorithms by which we have chosen to minimize complete sequential machines
are much more generai than the approach used in reference [1] and comparisons of size of
programs are difficult to make.

APL Functions for Machine Minimizatlion

The task of computing the maximal compatible sets of states Is performed by the four
functions COMP, EXP, MAXC, and SUBSET each of which produces an explicit result. COMP uses
globat variables STATE and OUTPUT and an ancillary function COLS to create a matrix of 2
columns and less than 2!N rows which lists atl palrs of states which are compatible. A list
of state pairs which are output compatible only Is produced as a by-product. The results from
COMP may then be passed to EXP which produces a logicai matrix which expresses the compati-
bllity retation. This result is then available to MAXC which produces the set system of maxi-
ma| compatibles. The function SUBSET is used to remove subsets from the Iist so as to maintain
a set system during the computations of MAXC. These four functions are given in Fig. 4. The
result of MAXC is a representation of a set system.

At this point we are faced with the problem of how the cover produced by MAXC Is represent-
ed. If the result is a partition, then we are guaranteed of having each of the N states appear
only once in the list. We know that there can be no more than N blocks in the partition and
each block has no more than ¥ members. What (s required to efficlently deal with a cover is
the concept of arrays of arrays. Certainly an easy way to handle partitions [s to use an ¥
element vector, ¥, such that V[I] is an integer giving the block number of state I. Thus,
1213241 represents the partition 1,3,7; 2,5; 4; 6. The expression [/V gives the number
of blocks In the partition, AV orders the partitlon without giving the locations where the
breaks between blocks occur. The size of the biock with the greatest number of elements is
relatively easy to derive and thls method ot representation wlil be used when we discuss
partitions with the substitution property below.

The requirement of being able to represent covers which are set systems Is still with us
however, and we have chosen to have the cover returned as a result by MAXC be represented in
the tollowing way.

Let B1, B2, ... BL be vectors representing the L blocks of the cover K then the result ¥
of MAXC will be:

Ve(L+2),0,(+\(pB1),(pB2),...,pBL) ,B1,B2,....BL

Then the function OF, shown [n Fig. 5 may be used to pick up the Kth block ¢f a cover stored in
the format of ¥V sbove.

.

The other functions of Fig. 5 enable us by use of MINIMIZE to do more than just perform
the same function as is accomplished by the program MIN of reference [I1] for complete machines.
MINIMIZE(1] calculates the cover (a partition). If the glven machine was minimal, we go to
line [9] and print a message. If the machine may be reduced we list the equivalence classes
by means of LIST which in turn makes use of OF and finally we REDUCE the state tabie and PRINT

the new machines tables using the global variables OLUSTATE and OLDOUT to hold a copy of the
original machine in case we want to return [t.

Partitions with the Substitution Property

The ¥ states of a sequentlal machine may be partitioned In PART N different ways, where
PART is given by:

122-MEREM 70

»

V Z«PART N:K;T

(1) | Ze,30Ke0 ¢

2] 200 T)!T* 14p2)+.x2),2
[3) +2auN>keK+t
[4) 2+1¢2

v

While the number of partitions grows quite rapidly as N Increases, the number of parti-
tions having the substitution property is vanishingly small compared to the resuit of PART N
and yet these are the partitions which contain the esserce of the flow information in a
complete sequential machine. Partitions which are closed may be used to decompose the machine
Into simpler machines in parallel or cascade or to reduce the interdeperdency among the [2e¥
blnary variables which encode the N states internal to the machine. An extensive discussion of
this topic may be found in reterence [7].

Reference [2] contains a FORTRAN program written for the Michigan Terminal System which
calculates all of the partitions having the substitution property of a sequential machine and
provides sufficient information to construct the lattice of closed partitions.

That constructicn proceeds in the following manner. Consider a pair of distinct states
as being grouped together in a block of a partition. Look at the image of this set under all
possible Inputs In the next state function, STATE, and group those states together as required
to maintain closure. This may mean creating new blocks or coalescing two or more blocks [nto
a larger block. When a blocking of the states found by Iterating in this manner holds, we have
8 partition having the substitution property.

These partitions are mapped into themseives by the next state function. This is more re-
strictive than requiring a partition to be mapped Info some other partition by the next state
function. Such a requirement leads to the idea of partition pairs, also discussed in reference
{73, but which Is beyond the present scope of discussion.

By examining all possible 2-stata generators in the manner described above we find all
possible partitions with the substitution property which are lattice atoms for the machine in
question. Also, some, but not necessarily ail, closed partitions are derived; however we may
derive the missing partitions by taking the SUM of presently derived partitions with tha sub-
stitution property since that property is preserved when we take the sum or intersection of
partitions which are themselves closed.

However, before proceeding with the derivation of additional partition we: |) NORMALIZE
the generator partitions to place them in the form previousiy discussed. Thls makes it easler
to compare two partitions for containment or equallity as well as convenientiy count the number
of blocks. 2) COMPRESS the tist of partitions removing duplicates.

The |ist of generator partitions Is then sorted In decreasing sequence by the number of
blocks In the partition for case of search for additional closed partitions.

The primary function SP Is shown together with Its ancillary functions in Fig. 6. The
FORTRAN program which they replace was given in reference [2]. That program is 346 statements
fong, and it consists of a main program, 4 subroutines and one logical function. All told
there are 35 FORMAT statements, 5 READS, and 36 WRITES to provide the necessary /0. There
are 89 assignment statements used in expressing the aigorithm. Iiteration is provided by the
use of 48 DO loops with 31 CONTINUE statements. Sequencing of statements is modified by 20
arithmetic IF statements, 26 logical IF statements (some of these provided conditional assign~
ment) and 13 GO TO's. There are 9 CALLs to subroutines and the function calls are generally
imbedded in logical IF statements. There are 7 DIMENSION statements and 27 other declarations
such as subroutine headers, variable type dectarations, RETURNs, ENDs, STOP, or DATA state~
ments. The function SP does the essential work of finding the partitions with the substitut-
fon property although the input/output format are siightly altered from the program SP in
reference [2].

Even with the straightforward modeiling of then original algorithms, compactness has been
achleved with APL. This leads to a representation of the algorithm which is easier to follow
and which Is to some extaent self-documenting by virtue of modularity and other system consid-
erations which tend to eliminate deciarations, odd naming conventions, and many of the
expliicit looping mechanisms dealt with by DO loop structures.

Concluslons

A finite state sequential machine has a matrix-|ike formulation, dbut both because of the
sequential nature of the device as well as the types of problems associated with sequentiai
machines, matrix formulations of the probiem algorithms are harder to come by. Even with the
traditional approaches to 3 problem APL provides a more compact representation of the al-
gorithm. In many respects the APL formulation embodies a greater degree of clarity which de-
rives from the concise nature of the ianguage.

Rather than compare sizes of a singie function or program It is more relevant to consider
the v'nodulari*ry inherent in APL which gives rise to considerable gains in convenience in creat-
ing and using the entire applications package. Here APl comes out way ahead. Also, in many
appilications of the sort that we have discussed where there is a great deai of interaction
between the user and the mocel that he is building the open ended nature of the APL Terminai
System is an asset. 1t must also be noted that with a great deal of interaction invclved,
the Interpretive nature of APL becomes less of a burden because: |} most of the time is the
person's thinking and reaction time, 2) a mode! of some sort [s generally being developed and/
or used and it is the person's time which is to be optimized and 3) Iin modeling the struc-
ture of the model Is usually subject to change and that requirement is easily satisfied In an
interpretive mode.

NEREM 78123

References

1] Piatkowski, Thomas F.: Computer Programs Dealing with Finite-State Machines: FPart I,

Technical Report, Department of Electrical Engineering, University of Michigan, Ann Arbor,
May, 1967 (AD-657 999).

[2] Pilatkowski, Thomas F.: Computer Programs Dealing with Finite-State Machines: Part II,

Technical Report, Department of Electrical Engineering, University ot Michigan, Ann Arbor,
July, 1967 (AD-658 00i).

(3] Prather, Ronald E.: Introduction to Switching Theory: A Mathematical Approach, Allyn and
Bacon, Boston, 1967.

(4] Hill, Frederick J. ang Gerald R. Peterson: |ntroduction to Switching Theory and Logical
Design, John Wiley and Sons, New York, 1968.

[5] kohavi, Zvi: Switching and Finlte Automata, McGraw-Hill, New York, 1970.

(6] Prather, Ronald E.: Minimal Solutiome of Paull-Unger Problers, Mathematicai Systems
Theory, vol. 3, (1965}, |, pp. 76-85.

[7]3 Hartmanis, J. and R. E. Stearns: Algebraic Structure Theory of Sequential Machlnes,
Prentice-Hall, Englewood Cliffs, N. J., 1966,

HUMBERIZ;ré;jﬁ'g.I YINITIALIZE(DIV
0: .
v IRITIALIZE;X;T;SW
gt:masn OF INPUTS. F {11 ‘NUMBER OF STATES.N*
2 (2] N0 ,
ENTER ROWS OF THE STATE TABLE AS RE £3] 'NUNBER oF INPUTS, P
QUESTED [s] PeO .
1 [5) STATE«\SWe
0: (6) Ket
5 8 £7) 'ENTER ROWS OP THE *.((
2 54711%xSW)4 'STATEOUTPUT'),' T
0: ABLE AS REQUESTED'
T e £e) «x
3 [£:D] +11x1P=pTe .0
0: £10] +8,p0«'SIZE FRROR RE-ENTER R
) ovt
“ 32 [11] STATE+STATE,T
0O: [12) +8x1NeXeX+l
s 2 £13] +16x15V
5 (1s) ‘'OUTPUT TABLE REQUIRED? (IES
0: . NOY?
38 [15] +17x1'X'¢0
6 {16) +6x102S5We~SW
O: [17] +20x1(pSTATE)=NxP
23 (101 OUT<(R.F)p0
YES, MO 19) »21
fog T TADLE REQUIREDY (YES: 1) [20] OUT+(X,P)p(A*P)+STATE
ENTER ROWS OF THE OUTPUT TABLE AS R {21 STATE«(N,P)oSTATE
EQUESTED [2z]v PRIRT
1
0:
2 e vyPRIFILOIY
0:
3 1 9 TePRINT;Q;IN;IP
0: [1] T+(($xP)p 1 0 O 0 O0)\ALPAL[Y
a2 +STATE]
bl [21 TC(;24Q+5x"14TP+1Plet,*
a: (31 TC;3+QleALPR2(U1+0UT]
o1 4] Te(-2 3 +pT)¢T
5 [s] T[31; 1+5xIP)«ALPR2(
0: 2+IP]
) 12 [6] TL[2+4IN;1)+ALPEIL 14N+ N])
[(73 Tl
0: [8) T(2;)'-"
11 v
I 2
""""" bl Fig. |. INITIALIZE, PRIN? and
A 1E,0 D,1 Their Use.
2 |p,0 D,0
c |lE,0 B,
p \Fr,0 B,0
Z ic,0 P,1
r (8,0 C,0

124—NEREM 70

VSIMULATELO]V

9 SIMULATE:;S:ST;X;B:I:0
(1] NEWASTATE:0+11p8+70"' '
2] ‘INITIAL STATE?'
[3) STeALPH1{1+5+0),50"' °
(%) 'STATE SUPPRESS? (YES.N0) !
(s] X«'N'0
(el 'oUTPUT t,(25 0" STAT
E*'){1+Xx;1,* INPUT®
{71 INPUT:I+{,000«0,(X/ST).(~X)/B
(8] I+'123456789'1 14T
[£:D] +DECIDEx \~Ie€r\P
[10) O«~ALPH2[1+,0UT(S;I]1],
10p" ¢
{11) ST«ALPH1(1+5+,STATE(S;I]],
59' A

[12) <INPUT
[13) DECIDE:*ILLEGAL INPUT (QUIT,
INPUT, NEWAMACHINE, NEWASTA

TE)' .
(18] -0
£15) QUIT:+
(16) NEWAMACHINE:INITIALIZE
[17) =+1

v

SIMULATE
INITIAL STATE?
a:

1 .
STATE SUPPRESS? (YES,NO)
1
OQUTPUT STATE INPUT

4 1

[E 2
1 r 1
0 B 2

o D 0
ILLEGAL INPUT (QUIT, INPUT, NEWAMA
CHINE, NEWASTATE)

INpPUT
D 1
0 r]
ILLEGAL INPUT (QUIT, INPUT, NEWAMA
CHINE, NEWASTATE)
0:
NEWVASTATE
INITIAL STATE?

1
STATE SUPPRESS? (YES,.NO)

YES

ourPUT IAPUT
1

[2

1 1

0 2

0 0
ILLEGAL INPUT (QUIT, INPUT, NEWANA
CHINE, NEWASTATE)

QuITr

Fig. 2. STIMULATE and its Use.

VSTRONG(O]V

V STRORG;S:T:R:B;IN

(1) BeSe,1

(2] T+(1,714T#1¢T)/T+T[41+5,,
STATE(S;]}

[3) +5x1A/TeS

(4] +2,5+7

sl Te(~TeS)/T+Ie1N

6] +(10x\R) pOe(Re0=pT)/'ALL ST
ATES ACCESSIBLE FROM STATE 1

L]

71 'MACHIRE IS ROT STRONGLY CON
RECTED.®

(s8) "CAN NOT REACH STATE',({1<oT
)/*'5')," ';T;* PRON STATE',(
(1<pB)Y/'S'),' ;8.

(8] <o

[10) B+ (T+5«,1)+IN

[11] Pe(1, 14R=1¢R)/R+RL4R*S,(V/
STATE(B;)es)/B]

f12] +14x1a/ReS

{13] +11,5+R

[(14) Be(~INeS)/IN

(18] =+7x10208

(16] 'MACHIRE IS STRONGLY CONNECT
ED.'

vSTRIOIV

v STR
[13 INITIALIZE
[2] STROBG
{3l *NEW MACRINE? (IES, HO)'
(8] =1x'Y'¢Q

STRONG
ALL STATES ACCESSIBLE FROM STATE 1.
NACHIRE IS NOT STRONGLY CONNECTED.

_ CAN NOT REACH STATE 1 FROM STATES

2 3 & 5 6.

Fig. 3. STRONG, STR and the Use
of STRONG.

NEREM 70128

~es e
WEW N
et e

(el

{7
(91

(17)
(18]}
{19)
(201

Fig. 4.

-

vCONP[D)Y
CSP+COMP ;17 ;IJ;51;52:53;:54;
7

CoLS
OC«A/{OUT(I;1=0)v(QUT{J;1=0)
v(oUrlIiJ=zourlv;])
CSp«0C/[1]) IJ

+0x1~v/0C
S1+((F+1),1)+.x51«(
2,052)p((2xpS52)pS220)x (52«83
LSu), (53« ,STATE{CSP[;1);)T
Sue STATE(CSP[;2]):]
Tea/S50+((pCS5P)[1],P)0S1e0,((
(N+1),1)e.xQCSP), ((F+1),1)e,
“(2,N)p1 A

+0xt(pT)=e/T

cSpP«r/(1] €SP

-5

veoLs(DlY

COLS;TM;CC

IJen(2,

0.5%pIJ)pIJ+(I+TH/ ,RCC),J+(
TN, IBe . <IR}/,CC(R N)pIN+1N
vEXPLD]V

RE+EXP PR;X

. RE«(1N)o.=\X

]

<

v

+6x102p,PR

X1
RE[PRIK;1);PR(K;2]]+1
+4x1(pPRI(1]2XKeX+1
RE+«REVRRE

VNAZCLO}V

ReMAXC CS;I:SiIR;/;:C;iT;415A42
iSW1;5W2;:Q

+0x1#/pCS

ReQe1Sv(Ie1)tpCS

IR+0,S

+19%3A/02CS(; I I21S

Je1

T+IR(JI4IR(J+1)¢R

+18x1~I¢T
+18x1~1€{(~T+¢CS[;T1)/I+Q)e?
A1+SUBSET(TeCSL:I17Q)/T
A2+SUBSET(I=T)/T
SWie~AfA1€¢A2

SW2+~a/A2¢Ad

Al+SW1/4L

A2«(SW2v~SW1) /A2
R+(IR(JItR),A1,42,IR(J+1)4R
IR+(J4+IR),((0%pA1)/IR{J]+pA1
), ((02042)/TR(J J+(pA1) +pA2),
((pA1)+(pA2)+IRLJIII+((J+1)4
IR)-IR(J+1])

JeJ+1

+6x1("1+pIR)2JeJ+1
»ux1S5>TeT+1

R+(1+pIR),IR,R

YSUBSET(OIV

QeSUBSET X;X

K+1

QX

+Sn1 Xxd
Qe(~a/XeIR[XI4IR(K+114R)/X
+0x1(K2"1+pIR)vOxpQ
+3,Kek+1

Functions to Find Maximal
Compatibles.

12-NEREM 70

YMINIMIZE(DO)V
v MINIMIZE;V
1) VeMAXC EXP CONP
(2] ~ENDx1F=¥(1]-2
(3] 'EQUIVALENCE CLASSES®
(s} LIsTV
[s] 'THE REDUCED MACHINE:'
{6 FPEDUIE V
(7] PrRINT
(8] o
(91 END:'THAE GIVEN MACHIRE IS MIN
IMaL!
yLISTCOlv
v LIST ViX;:Q
(1) QeV[iXe1]-2
(21 K3 ane ' X OP V
3] +2xQ2K+X+1
v
vor(plv
Y ReI OF Vv;J:T
[1] +2x(I>0)alsV(1]-2
(2] Jeriv(12r¥
£3] ReJOIY4J[I+1]4VI14V
v
VREDUCELD]V
Y REDUCE V;Q:K:R
(1] OLDSTATE«STATE
[2) oLbour«oUT
[3) OUT«STATE«((A+V[1]-
2),P)po '
] Xey
[5) FRex oOPV
[6) STATECK;)}«[#OLDSTATE[R;]
7] OUTLX;)+f/OLDOVT(R;]
[8] +SxiNak«K+1
{9] Qe(V{114V)rSTATE
[(10]) Ke2+710V(134V
[11) STATE«+/Qe.>X
v
PRINT
R 2
A {E,0 D,1
B |F,0 D,0
¢ i{E,0 B,1
D |F,0 B,0
E [C,0 P,1
F {B,0 cC,0
MINIMIZE
EQUIVALENCE CLASSES
1 #ee 1 3
2 axe 2 &
3 exn §
4 s+ §

THE REDUCED MACHINK:

Flg. 5.

Functions to Minimize
Compiete Machines and
Thelr Use.

- . . V§PLOls
. V SP;IJ;I:J;TM:CC;G2:82:;X:8;7;
[L:Q;5Q
| (1) coLs
i [2) G2+(N2,M)+((H2+2!N),1)00
(31 X+l
(4] L1:G2(X;IJLX;11+1
[s] +L1% 1N22KeX+1
[6] X«1
7] L2:Be1
8] L3:T«STATEC(G2(X:1=B)/IN;)
{9) L+t
£10) Lu:+L5x1v/0=QeG2[X;T(:L])])
11) <L6,620K;T(;L})+«1+4[/G2(X;]
£12) LS:+L6x1((pQ)2pSQIAA/SQe145Q+
(Q=0)/Q
€13] L7:62{K:((Q=0)/T(;L]).(G2(K;]
€SQ)/INI+B+1/5Q
(18] G20K;1«G20K;:)1-Q\+/((Q+G2(X;]
20)/G2[K;1)».>(SQ=B)/SQ
(18] 12
(16) Le:+Lux\P2LeL+1
[17] +L3x1([/G2(K;))2B+B+1
(18] +L2x1N22XK+K+1
(19] k+1 .
[20) L8:G2(X;)«NORMALIZE C2(X;]
{21) <Lex\N22XKeK+1
[22) G2+G2(¥ /G231
23] BeG2A.28G2
{24) COMPRESS
(25) PPeN
(26) LEVEL«L<0
[27] L10:Q«(SQ+0=v¢B)/114pB+0ORDER
c2
(28) PP+PP,,5Q462
(29) LEVEL<LEVEL,(+/SQ)pL+L+1
[30) -+LiuxiizpQ
(31] Iet
[32) Li1:J+1+1
(33) L12:+L13x1v/G2A,=T«62[Q(I];]
SUN G2(QLJ71;]
(38) G2¢(1 0 +pG2)p(,G2),T
{35) Z13:+L12%1(pQ)2J«J+1
(36]) +Li1x1(pQ)>J«T+1
(37] Lis:G2+(~(114pG2)eQ) /G2
[38]) <+L10x10<x/pG2
(39) PP+(((pPP)+N) ,N)pPP
[u0) Xeo
[u1]) L15:X;°' CSLEVEL[1+X);"
*;PRT 14X .
(42) <+L15x(14pPP)>X+K+1
v
ySuxlOlv
V ReI SUM J;XK;B;C;IN
(13 +0x1(pl+,I)upde,J
(2] IN+e1pR+(pI)p0
(3) X+1
(4] S1:8¢((IeJ(X1)/IN) U(JeJLRI)/
N
[5) S2:C+B U((IeI(B1)/IN) U(JeJI(B
1)/1I8
[6] +53x1(A/CeB)AA/BeC
(7] +52,B+C
[8) S3:R(Blex
[9]1 +Si1x:1(pR)2X+R:10

[10] R+NORMALIZE R
v

Fig. 6.

\

I lnlEalelal
WA e
e

1]
[2]

[£)]

[s]
4]

[13

<

v

veoLsiQlve

CoLS;T™;CC

IJ+&(2,
0.SxpIJ)pIJe(I+TM/ RCC) T+ (
TMe ,INe <IN)/ ,CC+ (N B)pIN+ 1A

VNORNALIZE(D])V

S+«NORMALIZE Vi;K;P;Q;:T:IN
S+(pVipke1

Pe1QeINe 10V
S(Te(VeV{1¢GQ1)/IN)eP
P+P+1

Q+(~QeT)/Q

+3x10<pQ

VORDER[D]v

P«ORDER Y;I;J
Pero
Je(I+1)4pY
P+P,Y COVER I
*3x\JeTels1
P+(2pJ)0oP

vCOvERLOIV

SeX COVER I;R;:T:Q;:X

ReF/X(I:]

SeIri(Ke1)¢pX

+Sx 11T (X[1K) /1
14pX

S5+SAn/Qa16Q+X(;T]

+3xR2XeX+1

VCONPRESS(D]V

COMPRESS ;T

Te10

X+

Qe114038
T«?,602080X;111;)
KeX+4/B(X;)
»ux1XS2 !N

G2+ (({(pT)tN) M)p?

vPRTIO1Y

Z+«PRT K;A:B:C;IN

Ce14IR+K

2«10

B+l /PP(X;]

ZeZ,' (', ((1,(2x714pA)p 0 1)\
A+ALPE1{1+(PP(X;]1=C)/IN]),"*)
<t

*4x1B20«C+1
2e7142

vu(alv

I«X U Y
Ze2042Z+Y,(~XeX)/X]

SP and Associated Functions.

This work was done In conjunction with Air Force Contract F30602-70-C-~0190 and NASA Grant
NGR 33-022-125.

NEREM 70-127

NASA Grant NGR 33-022-125

REPRINTED FROM “TECHNICAL APPLICATIONS PAPERS - NEREM 70"
70C 63 NEREM COPYRIGHT 1970

USING APL TO INVESTIGATE SEQUENTIAL MACHINES

Garth Foster

Electrical Englneering Department, Syracuse University

Introduction

Designers of digitel systems invariably encounter problems in which the sequence of
signal patterns is critical. At these times the creatlon of the correct finite state sequen-
lial mackine model is required as a portion of the synthesis procedure. The facility fo exam
ine 2 nurber of finite state sequential machines, to look at many properties of a single model,
or to examine a rumber of alternate formulations would be a useful too! for computer engineers,
logical designers, computer scientists, and teachers. The use of the APL\360 Terminal System
to provide such 3 tool allowing the researcher to probe finite state sequential machines is
described in this paper. The collection of functions which are collected in a workspace at
present have been influenced by some time shared programs written by Thomas F. Piatkowski In
BASIC (3 programs) and FORTRAN on the Michigan Terminal System (i program). These were report-
ed in references [1] and [2] respectively, and following their design objectives allows the
interested reader the opportunity to make some comparisons betwsen the functicns written in
APL and good implementations in these more traditional and widely avallabie |anguages.

Formally a finlte state sequential machine, M, is a 6-tuple M = <5, X, Z, &, A, s>,
where S is the set of states, X Is the set of inputs, Z is the set of Outputs; § is the next
state function, mapping ordered pairs of states and Inputs into states; 6:5 x X + S; and A Is
the output functicon, mapping ordered pairs of states and inputs into outputs, 1:S x X =+ Z; and
s_ is the initial state, a distinguished mewber of S. 14 & and XA are defined tor all members
of the Cartesian product S x X, we say the machine is completely specified; otherwise the
machine is incomplete. If the machine has an output funcfion i which fs only 2 function of
the state then the model is a Moore machine modei; otherwise in the most general form of out-
put function it is a Mealy model.

In our formulation we will represent the set of states by the first N integers, \N In
ORIGIN 1 and the set of Inputs will be represented by 1P and the set of outputs by 1Q. The
next state mapping is represented by a variable which is a 2-dimensionec array called STATE
with a row representing the present state and the columns representing the states reached by
one of the P inputs. !n 2 similar manner we use a matrix, not surprisingly, named OUTPUT to
hold the output mapping. Thus pOUTPUT is N,P. .

Our mode! thus deals with N,P,.Q Mealy machines. By entering 0's appropriately in STATE
or OUTPUT we will denote undefined next state or output mappings and thus include incompletely
specified machines in the model. How these functions currently relate to Incompletely speclf-
ted machines will be covered later. Suffice it fo say that the programs in (1] and [2] deal
with complete machines and so some functions described here deal only with complete machines
tor purpcses of comparison.

INITIALIZE and PRINT

The tunction INITIALIZE provides a conversational way of setting ¥ and P and specifying
STATE and OUTPUT with the option of not providing an output function should it not be of
impcrtance, as for example, in checking to see if the machine iIs strongly connected. After
specifying the appropriate variables INITIATIZE calls PRINT to display the machine. PRINT
produces as an explicit result an array of characters giving the mappings contained in STATE
and OUTPUT together with some formatting niceties.

At present states and outputs are represented as single characters taken from character
vectcrs ALPH1 and ALPE2 respectively. Thus for purpcse of display "don't care" states and
outputs are represented by - and states are represented by tetters and outputs by hexadecimal
digits. The present restriction in disptay then is N < 26 and Q s 16. Changes in PRINT,
ALFH1, and ALPH? would remove this restriction, and P<9 may be altersd by changing FPRINT.

These functions are shown in Fig.).

In passing we note that separate variables were chosen to store the next state and output
mappings rather than storing both mappings as planes of a single array. This Is to provide
for the future when we will handle Moore type machine models whaerein the output is an ¥
element vector rather than a matrix. At present we may handie this type of machine by the
artifice of having ail P columns of OUTFUT be ldentical.

Simulating a Finite State Machine

It is useful after having speci¢ied a particular sequentlal machine structure to specify
a starting state and then upon giving successive inputs to have the corresponding outputs dis-
played, perhaps with the option of having the current state of the machine displayed or not.

120-MEREM 78

The function SIMULATE performs this task, and its display together with a sample of its use

are shown in Fig. 2. This function matches, for the most part, the output createad by the pro—
gram SIM IA reference [{] (pp. 4-9).

SIM is written in BASIC and contains 72 statements. Among these statements there are 35
PRINT statements, 6 GO TO's, 9 IF's, 5 FOR statements and 5 associated NEXT statements, 7 iN-
PUT, | LET statement, 2 DIMensicn, | END and | STGP statement. Since the value of variables
can only be changed by an INPUT or LET statement, most of the program is clearly printing and
sequence control. Moreover, the sequential nature of the problem denies exploitation of the
powerful array operators in APL. Thus, we should not be surprised when we find that to modal
the same function in APL requires the 17 statement function SIMULATE, the 22 statement INI-
TIALIZE and the 8 statement function FRINT, for a total of 47 reasonably straight forward
statements, Still several advantages other than a siight ¢ain in brevity are obtained in the
APL approach; these are:) Mcdularity. The functions INITIALIZE and PRINT are usable in
their own right and in turn may and will be calied by other functions; other programs in [i],
for example, duplicate the equivalent of INITIALIZZ (using 35-38 BASIC statements) at the
beginning of each program. 2) Flexioilifx. Dynamic ailocation of memory and a greater flexl-
bility and convenience in inpu? formaT requirements allow the functions to be adapted to a
wider variety of machines. 3) Generality. The APL functions shown also accommodate the simu-
lation of incompletely specified machines.

Strongly Connected Mactires

A sequential machine is Termed strongly connected if for any arbitrary pair of states
I,J, there exists some sequence of inputs which takes the machine from I as an initial state
to J as a final state. It is thus sufficient to be able to go from state | to any other state
and also to make a {multiple step) transition from any state to state |.

in the implementation under discusslion, this task Is performed by STRONG which is shown
In Fig. 3. To model the BASIC program STR of [1] we also show in fig. 3 the APL function STR
which acts as calling sequence to STRONG, INITIALIZE and PRINT.

We must comment in passing that due to the modular nature of APL, STR is really not need-
ed; we may initiate the execution of INITIALIZE and then STRONG diraectly from the terminal and
although these are separate functions, both manipulate common global variables. The conven-
lence of having functions and variables pocled as resources In a workspace to be used whenever
needed is a tremendous advantage of the APL Terminal System. In short we need only add the 16
statement function STRONG to those aiready described to check whether a machine is strongly
connected. Note that most of the work is done In STRONG(2] wherein we start with a set of
states, S, {Initially set to 1) that we can reach from state | and then find all the states we
can reach with one more Input, append that to §, sort the set of states, and drop out dupli-
cate entrles. When that Iist has no new entries on it we have the list of states reachable
from state |. In a similar fashion STRONG[11] builds a |ist of states from which state | may
be reached by some input sequence. Bafore turning our attention to the problem of minimiza-
tion, It should be noted that an added advantage of STRONG over STR written In BASIC in
reterence [1] is that STRONG lists all states which cannot be reached from state | as well as
al| states which cannct reach state | rather than just the first state In lexical order which
futtilis one of these qualifications as is done In STR.

Minimization of Sequential Machines

The classical concept of minimization of sequential machines Is that of removing super-
fluous states so as to reduce the number of states in the state table. A state Is superfluous
If it Is equlvalent to some other state where we say two states are equivalent it the outputs
are equal for any Input and if the palr of states reached under any Input are also equivalent.

This relationship 1s an equlvalence which Induces a partition on the states of the
machine breaking that set up into a set of sets such that each of these sets or blocks of the
partition has no member In common with any other block of the partition and such that any pair
of states within a block are indistinguishable from one another in terms of input-output
cons|derations.

Since all states within a block have the same output for each input, each of the blocks
serves as 2 prototype for a state in a minimized machine. This solves the classical minimi~
zation problem providing the machine Is completely specified. It is this procedure that has
been Impiemented in the BASIC program MIN which aiso appears In reference [1] (pp. 17-24).

Unfortunately the concept of equivalence no longer holds If the sequential machine is not
completely specifled. We do not intend this to be either a tutorial or a review of the mini-
mization of incompletely specified sequential machines; the reader can refer to references 31,
{47, (5] or any other recent book on switching and automata theory. However, to provide a
better understanding of the APL functions which follow, some additlional deflinitions and dis-
cussion are required.

Minimal Incomplete Machines

When the specification of the machine is not complete, rather than equivalence of states,
we say that two states are compatible if for all Inputs, the outputs of the states are identi-
cal where they are both defined and where for any Input the next states reached by the pair of
states are compatibie where both next states are defined. This relation between pairs of
states Is reflexive and symmetric but not transitive. States which are compatible by this
definition may be grouped into the largest sets such that each pair of states in a set is pair-
wise compatible and such that no further state may be added to a set without destroying
compatibility. The collection of sets Is called the maximal compatibies.

A sot of sets, K = (BI, 8

Bp}, is called a cover for a set, S, of states if
[

ORI

NEREM 70-171

The cover s 2 set system it

.
2) B 8 i

That Is, no block may be a subset of any other block. Further, if a set system has the prop~
erty that for all i,j

3 B.nB, =§
' J

then the set system is a partition which we have discussed above. Thus, every partition is a

set system but the converse is not true.

Relative to sequential machines, a set system (or partiticn) is closed or has the substi-

;:f'i(on property if for any Bi € K, we have G(Bi,J) SBJ for any input J and for some block B_j

Now, the maximal compatibles (equlivalence classes) arising from the compatibility (equl-
valence) relations defined on incompletely (completely) specified sequential machines are
closed due to the definition of compatipility (equivalence) of states.

Moreover, if one finds the maximal compatibles for a completely specified machine, the
compatibitity relation becomes an equivalence and the equivalence classes are thus obtained.
Thus, the minimization of & completely specified machine is a subproblem of incomplete machine
minimization, and the maximai compatibles solve the problem for complete machines.

On the other hand, for incompletely specified machines having the maximal compatibles Is
not sufficient for minimization. Ffor while the maximal compatibles are closed, they may not be
minimal. A closed cover (a set system) may be derived by considering subsets of the blocks of
the maximal compatibles, and this serves as a definition of a minimal machine. This problem
{s beyond the scope of this paper and it is discussed at length in retferences (3], [45 and (5]
for example and an algorithm is given in (6] for a solution to this problem.

These methods have not yet been implemented in this workspace but we mention the problem
here to indicate the direction of further development of the workspace. We also seek to
Indicate that the algorithms by which we have chosen to minimize complete sequential machines
are much more general than the approach used in reference [|] and comparisons of size of
programs are difficuit to make.

APL Functions for Machine Minimization

The task of computing the maximal compatible sets of states Is performed by the four
functions COMP, EXP, MAXC, and SUBSET each of which produces an explicit result. COMP uses
global variables STATE and OUTPUT and an anclliary function COLS to create a matrix of 2
columns and less than 2!N rows which lists all pairs of states which are compatible, A list
of state pairs which are output compatibie only Is produced as a by-product. The results from
COMP may then be passed to EXP which produces a logical matrix which expresses the compati-
bility relation. This result is then available to MAXC which produces the set system of maxi-
mal compatibles. The function SUBSET is used to remove subsets from the list so as to maintain
a set system during the computations of MAXC. These tour functions are given in Fig. 4. The
result of MAXC is a representation of a set system.

At this point we are faced with the problem ot how the cover produced by MAXC Is represent-
ed. If the result is a partition, then we are guaranteed of having each of the N states appear
only once in the list., We know that there can be no more than N blocks in the partition and
each block has no more than N members. What is requlred to efficiently deal with a cover is
the concept of arrays of arrays. Certainly an easy way to handle partitions is to use an ¥
element vector, V, such that V[I] is an integer giving the block number of state I. Thus,
1213241 represents the partition 1,3.7; 2,5; 4; 6. The expression /¥ gives the number
of blocks In the partition, AV orders the partition without glving the locations where the
breaks between biocks occur. The size of the block with the greatest number of elements is
relatively easy to derive and this method of representation will be used when we discuss
partitions with the substitution property beiow.

The requirement of being able to represent covers which are set systems Is stil] with us
however, and we have chosen to have the cover returned as a result by MAXC be represented in
the foilowing way.

Let B1, B2, ... BL be vectors representing the L blocks of the cover K then the result V
of MAXC will be:

Ve{L+2),0,{+\(pB1),(0B2),...,pBL) ,B1,B2,...,BL

Then the function OF, shown In Fig. 5 may be used to pick up the Xth block of a cover stored In
the format of V above.

The other functions of Fig. 5 enabie us by use of MINIMI2E to do more than just perform
the same function as is accomplished by the progrem MIN of reference [{] for compiete machines.
MINIMIZE(1] calculates the cover (a partition). 1f the given machine was minimal, we go to
line [9] and print a message. !f the machine may be reduced we list the equivalence classes
by means of LIST which in turn makes use of OF and finally we REDUCE the state table and PRINT
the new machines tables using the global variables OLDSTATE and OLDOUT to hold a copy of the
original machine in case we want to return it.

Partitions with the Substitution Property

The N states of a sequentla! machine may be partitioned In PART N difterent ways, where
PART is given by:

122-NEREM 70

9 Z+PART N:K.T
(1] 2+,1¢K+0
Y2] 2e(((0nT) T« 1402)0.%2),2
[3] ~2a@>KeX+1
(4] ze142

v

While the number of partitions grows quite rapidly as N Increases, the number of parti=
tlons having the substlitution property is vanishingly small compared to the result of PART ¥
and yet these are the partitions which contain the esserce of the flow information in a
comp lete sequential machine. Partitions which are closed may be used to decompose the machine
Into simpler machines in parailel or cascade or to reduce the interdeperdency among the [2eN
binary variables which encode the N states internal to the machine. An extensive discussion of
this topic may be found in reference [7].

Reference [2] contains a FORTRAN program written for ths Michigan Terminal System which
calculates all of the partitions having the substitution property of a sequential machine and
provides sufficient information to construct the lattice of closed partitions.

That constructicn proceeds in the foilowing manner. Consider a pair of distinct states
as being grouped together in a biock of a partitlon. Look at the image of this set undser all
possible inputs In the next state function, STATE, and group those states together as required
to maintain closure. This may mean creating new blocks or coalescing two or more blocks Into
a larger block. When a blocking of the states found by iterating in this manner holds, we have
a partition having the substitution property.

These partitions are mapped into themselves by the next state function. This is more re-
strictive than requiring a partition to be mapped into some other partition by the next state
function. Such a requirement leads to the ldea of partition pairs, also discussed In reference
[7], but which Is beyond the present scope of discussion.

By examining all possible 2-state generators in the manner described above we find ali
possible partitions with the substitution property which are iattice atoms for the machine in
question. Also, some, but not necessarily all, closed partitions are derived; however we may
derive the missing partitions by taking the SUM of presently derived partitions with the sub-
stitution property since that property is preserved when we take the sum or intersection of
partitions which are themselves closed.

However, before proceeding with the derivation of additional partition we: |) NORMALIZE
the generator partitions to place them in the form previousiy discussed. This makes It easier
to compare two partitions for containment or equallty as well as conveniently count the number
of blocks. 2) COMPRESS the 1ist of partitions removing duplicates.

The 1l1st of generator partitions Is then sorted in decreasing sequence by the number of
blocks In the partition for case of search for additional closed partitions.

The primary function SP is shown together with its anciltary functions in Fig. 6. The
FORTRAN program which they replace was given in reference [2]. That program is 346 statements
long, and it consists of a main program, 4 subroutines and one togical function. All told
there are 35 FORMAT statements, 5 READS, and 36 WRITES to provide the necessary |/0. There
are 89 assigmment statements used in expressing the aigorithm. (teration is provided by the
use of 48 DO loops with 31 CONTINUE statements. Sequencing of statements is modified by 20
arithmetic IF statements, 26 logical IF statements (some of these provided conditional assign-
ment) and |3 GO TO's. There are 3 CALLs to subroutines and the function calls are generally
imbedded in logical !F statements. There are 7 DIMENSION statements and 27 other deciarations
such as subroutine headers, variabie type declarations, RETURNs, ENDs, STOP, or DATA state-
ments. The function SP does the essential work of finding the partitions with the substitut-
fon property aithough the input/output format are slightly altered from the program SP in
reference [2].

Even with the straightforward modeling of then original algorithms, compactness has been
achieved with APL. This leads to a representation of the algorithm which is easier to follow
and which is to some extent self-documenting by virtue of modularity and other system consid-
erations which tend to eliminate declarations, odd naming conventions, and many of the
expliclt looping mechanisms dealt with by DO loop structures.

Conclusions

A finite state sequential machine has a matrix-llke formulation, but both because ot the
sequential nature of the device as well as the types of problems associated with sequentlal
machines, matrix formulations of the problem algorithms are harder to come by. Even with the
traditional approaches to a problem APL provides a more compact representation of the al-
gorfthm. In many respects the APL formutation embodies a greater degree of clarity which de-
rives from the concise nature of the language.

 Rather than compare sizes of a single function or program it is more reievant to conslider
the modularity inherent in APL which gives rise to considerable gains in convenience in creat-
ing and using the entire applications package. Here APL comes out way ahead. Aiso, in many
applications of the sort that we have discussed where there is a great ceal of interaction
between the user and the modei that he is building the open ended nature of the APL Terminal
System is an asset. It must also be noted that with a great deal of interaction involved,
the Interpretive nature of APL becomes less of a burden because: |) most of the time is the
person's thinking and reaction time, 2) a model of some sort Is generally being developed and/
or used and it is the person's time which is to be optimized and 3) in modeling the struc-
ture of the model is usually subject to change and that requirement is easily satisfied in an
Interpretive mode.

NEREM 79123

Referefces
*[1] Piatkowski, Thomas F.:

May, (967 (AD-657 999).
[2] Piatkowski, Thomas F.:
July, 1967 (AD-658 001).

[3] Prather, Ronald E.:
Bacon, Boston, 1967,

[4] Hitl, Frederick J. and Gerald R. Peterson:
Design, John Wiley and Sons, New York, 1968.

[5] Kohavi, Zvi:

[6] Prather, Ronald E.: Minimal Solutiong of Paull-Umger Problers,

Theory, vol. 3, (1969), |, pp. 76-85.
[7] Hartmanis, J. and R. E. Stearns:
Prentice-Hall, Englewood Cliffs, N. J., 1966,

INITIALIZE
NUMBER OF STATES,.®
0:

L]
NUMBER OF INPUTS, P v
O: (1]
2 (2)
ENTER ROWS OF THE STATE TABLE AS RI 3]
QUESTED {u)
1 {s]
0: (sl
S 73
2
0:
6 4 {e)
3 (9]
0: [10)
$ 2
[[11%
3 (12
0 6 2 (13)
-] [14]
0:
38 [1s]
[) (18]
O: {17)
23 {18]
OUTPUT TABLE REQUIRED? (YES, NO) (19)
Y£S {20]
ENTER ROWS OF THE OUTPUT TABLE AS R [21)
EQUESTED [22]
1 v
O:
12
2
0:
11
3 v
0: (1]
12
5 £33
O: 3
11 (4]
5 {s]
¢ 12 {s]
] (7]
0: [sl
11 v
11 2
"""" bt Fig. !.
A |E,0 D,1 Thelr Use.
B |P,0 D,0
c |E,0 2,1
D |r,0 38,0
£ {c,0 P,
r |B,0 C,0

124-NEREM 78

. Computer Programs Dealing with Finite-State Machines:
Technical Report, Department of Eilectrical Engineering,

Computer Programs Dealing with Finite-State Machines:
Technical Report, Department of Electrical Engineering,

Introduction to Switching Theory:

Part I,

Part 11,

A Mathematical Approach, Allyn and
Introduction to Switching Theory and Logical

Switching and Finite Automata, McGraw-Hill, New York, i970.

Mathematical Systems

Algebraic Structure Theory of Sequential MachInes,

VINITIALIZE(O]V

INITIALIZE;X;T;SW
*NUMBER OF STATES,N'
Lags]

*NUMBER OF INPUTS, P'
P«Q .

STATE«\SW+

Xt

YENTER ROWS OF TRE *,((
S+ 11xSW)¢'STATEOUTPUT),' T
ABLE AS REQUESTED'

) 4

+11x%1P2o7+,0

+8,p00¢'SIZE ERROR RE-ERTER R
ow'

STATE«STATE,T

+Bx NzXeKed

+16x 15V

'oUTPUT TABLE REQUIRED? (YES
. HO)*

+17x1'0'el)

+6x10nSWNe~SW
+20x1(pSTATE)=NxP
OUT+(#,P)p0

+21

OUT+(N,P)p(AxP)ISTATE
STATE~(N,P)oSTATE

PRIRT

vPRINT(O1Y

T+PRINT;Q:IN; IP
T+((SxP)p 1 0 0 0 0)\ALPHF1[1
+STATE]
TL;2¢Q+Sx"14IP+1Ple"
70 :3+Q)«ALPR2(1+0UT])
Te(- 2 3 +pT)4T

T{1; 145xIP)+ALPA2(
2+]P)
T(2¢IR;1)«ALPHI(14IN+N)
Ti3)e

TL23)e' "

INITIALIZE, PRINT and

University of Michigan, Ann Arbor,

University of Michigan, Ann Arbor,

VSIMULATELDIV

¥ SIMULATE;S;ST;:X;B;I:0
(1] NEWASTATE:0+11pB+7p' '
[{2) 'INITIAL STATE?'
[3] S5T+ALPH1[1+5+0).50" '
(D] *STATE SUPPRESS? (YES.,NO) °*
(s] P Oy AR]
{s] 'OUTPUT *',(2 5 o' TAT
E'{1+X;1,* INPUT®
(71 INPUT:I+(1,0p0+0,(X/ST),(~X)/B
[8] I+'123456789°'1 1471
[91 +DECIDExi~le P
[10) O«ALPH2(1+,0UT(S;I11,

100" '
[11]) ST+ALPH1[1+5+,STATE(S;I]],
5p' !

[12] +INPUT
[13) DECIDE:'ILLEGAL IKPUT (QUIT,
INPUT, NEWAMACHINE, NEWASTA
) .
(18] -0
[15) QUIT:~
{16) NEWAMACHINE :INITIALIZE
[17) =+
v

SIMULATE
INITIAL STATE?
O:

1 .
STATE SUPPRESS? (YES,NO)
o
ouTPUT STATE INPUT

A 1

[] 3 2
1 r 1
[} B 2

0 D 0

ILLEGAL INPUT (QUIT, INPUT, NEWAMA
CHINE, NEWASTATE)
IRPUT

D 1

L] 1 4 |

ILLEGAL INPUT (QUIT, INPUT, NEWAMA
CHINE, NEWASTATE)

a:

NEWASTATE
IRITIAL STATE?
O:

1
STATE SUPPRESS? (YES,.NO)
YES
ourPUT INpPUY

1

[} 2
1 1
] 2

(] 0
ILLEGAL INPUT (QUIT, INPUT, NEWANA

CHINE, NEWASTATE)

QuIr

Fig. 2. STIMULATE and ts Use.

YSTRORG(DIY

Y STRONG;S;T:R:B; 1IN

(1] BeSe,1

[2] T+(1,714721¢T)/T+T{ 4TS5,
STATE(S5;]]

(3] +Sx1A/TeS

(8] +2,5¢7

{5) Te(~TeS)/TeINe1N

(6] (10 1R)LpOe(R+0=pT)/'ALL ST
ATES ACCESSIBLE FROM STATE 1

L]

(4] 'MACHIRE IS ROT STRONGLY CON
NECTED.'

(£:D] 'CAN ¥OT REACH STATE',((1<pf
)/'5')," ';T;' PRON STATE',(
(1<pB)/'S'),"' *';8;5'.!

(91 =0

[10] B+ (T+S+,1)¢1IN

{11) Re(1, 1¢R=1¢R)/R+RLAR+S, (v/
STATE(B;JeS)/B}

[(12] +iu4x1a/PeS

[13] +11,5«R

(142 B+(~INeS)/IN

{15] <+7x10208

[16] 'MACHINE IS STRONGLY CONNECT
ED.*

vSTRIDIV

v STR
[1] IRITIALIZE
(2] STRONC
[3} ‘NEW MACHINE? (JES, NO)!'
(4] +1x'2'¢0

STRORG
ALL STATES ACCESSIBLE FROM STATE 1.
MACHINE I5 NOT STRONGLY CONNECTED.

_ CAN NOT REACH STATE 1 FROM STATES

2 3 & 5 8,

Fig. 3. STRONG, STR and the Use
of STRONG.

WEREM 70128

® vCONP(O19
V CSP+COMP I:/;:1J;51;52:53:8%;
T

cOLS

OC~A/(OUT{I;)=0)vV(OUPLI:1=0)

v{oUT(I;)=0UT(/;])

CsP«0C/[1] 1IJ

“0x1~v/0C

S1+((N+1),2)¢.xS1e(

2.p52)p((2%pS2)pS220)x(52+523

L54), (53« ,STATELCSPL ;1) 1T

Sue ,STATE[CSPL ;2);]

(6] TeA/S0+((pCSPI(1),P)pS1¢0,((
(N+1),1)+.xQCSP), ((R+1),1)¢.
x(2,N)p 1 ¥

[7) +0x1(pT)=¢/7

{8] CSP«T/(1] csp

(31 =5

[l le el
MEW e
et e

veoLstolv

v COLS;TM;CC
[1) IJ«%(2,
0.5xpIJ)pIJe(I«TM/ ,RCC) J+(
TM+ I8 . <IR)/ ,CC+(R,R)pIN+ N

vEXIPLO)Y

V RE+EXP PR;:XK
[1) . RE«(\N)o,.=\¥
[2] +6x1020 ,PR
[3) Xe1
(4] RECPRIX;1);PRIK;2]])«1
{s] +uxi(pPR)[(1]2KeX+2
(€3] RE+REVQRE

VNAXC(DI®

Ll

ReMAXC CS;I:S:IR3J;C;T:41;42
iSW1;5K2;Q

[1) <oxi1m/pCS

(2] ReQerSe(I+1)40CS

£3) IR+0,S

(8] +19x1a/02080 ;T2 IS

£s] Jel

{6} T«IRLJI+IR(I+1)4R

(7] +18x1~J¢T

(8] 18xr~1e((~F4CSTIY)/T4Q)eT
(9] A1+SUBSET(TeCSL;I)/Q)/T

(10) A2+SUBSET(IaT)/T

[11) SWie~a/At1eA2

[12) SW2e~A/A2¢A1

[13) A1+5W1741%

[14) A2+(SW2v~5W1)/A2

[15) R+«(IR(JI4R),A1,42,IR(J+114R
[16) IR«(J+IR),((02pA1)/IR(JI+pAY

), ((0=pA2)/IR({J]+(pA1)4pA2),
((pA1)+(pA2)+TR[JI)+((J+1)4
IR)-IR[J+1)

(17) JeJde1

(18] +6x1(TLepIR)2J¢J41

(18] -ux1S5>IeT41

[20) R+(1+pIR),IR,R

YSUBSET{O)V

V Q«SUBSET X;X
1] K+l
(2] QX
[3] +5x1X2d
{u] Qe(~A/XeIR[X)+IR[X+1)4R)/X
(5] +ox1(Xz"1+4pIR)v0=pQ
(6] +3,KeX+1
v

Fig. 4. Functions to Find Maximal
Compatibles.

TX-NEREM 70

UNINIMIZE(D)?

vV MIRIMIZE;V

(1) VeMAXC EXP CONP

(2] <ERDx\ReV{1]-2

[3] 'EQUIVALENCE CLASSES®
(4) LIsrt v

[s] 'THE REDUCED MACHINE:'
[6) pPEDUCE V

(7 perIRT
(8] =0
(9] END:'TRE GIVEF MACRINE IS MIN
IMAL®
v
vLIsTIOIY

v LIST ViX;Q
(1) QevIX+11-2
{21 K;' 2ee ;xor v
[3] +2xQak+Xe1

vor{0lv

¥V Rel OF V;J;T
[1] +2x(I>0)aIsV[1}-2
(2] J«14vV(1dey
[3] ReJUIM4J[I+11¢4VI[1)4V

VAEDUCE{D1v

REDUCE V;Q;X;R
OLDSTATE«STATE
0LDOUT«OUT
OUT«STATE+((N+V(1]~
2),P)p0 :
Xe1

ReX OP V
STATE(X;)+l f/OLDSTATE(R;])
OUTCX;)+l fOLDOUTIR;]
+5x 1 N2 KX+l
Qe(V{114V)STATE
Ke24719V(114¥
STATE«+/Qe . >X

@ W
- O
<

e lalnlslainleln i elnle
O TOWME
[y

NINIMIZE
EQUIVALENCE CLASSES
1 2ee { 3
2 *ne 2 &

3 wee §
4 eve §

THE REDUCED MACHINE:

11 2
A {c,0 8,1
8 |p,0 B,0
C 4,0 D,%
b is,0 4,0

Fig. 5. Functions to Minimlze
Compiete Machines and
Their Use.

- »

. vSPIO)Y
V SPiIJ I/ TM;CCiG2:R2:X;:8;7;

L;Q:5Q

(1) coLs

(2] G2+ (N2,M)4((N2+2!N),1)p0

(3] x+1

(4] L1:G2(X;IJ[X;])+1

{s) +Li1x1N22KeX+1

(6] Xe1

(7] L2:B+1

[8) L3:T+STATEL(G2{X;1=B)/IN;]

(9] L+a

(103 Lu:+LSx1v/0uQeC2(X;:P[;L1]

C11) +18,G20K;TC;L))+141/C2(X;]

[12) LS:+L6x1((pQ)2pSQ)IAA/SQe145Q+
(Qn0)/Q

[13) L7:620X;((Q=0)/T[;L]).(G2[X;])
€SQ)/IN)+B+L/5SQ

(183 G2[K;1+G20X;1-Q\+/((QeG2(X;]
%0)/C2[K;1)e.>(5Q=B)/SQ

[15] L2

{16) Le:+Lux1P2L+L+]

(17] +L3xv(1/G2{X;1)2B+B+1

(18] +L2x1F22KeX+1

(19] Ke1 .

(20) Lo:G20X;)+NORMALIZE C2{X;]

(21] <+L8x\N22X+K+1

[22] G2+Cc2[¥7/62;)

[(23) BeC2A.28G2

[24) COMPRESS

[25) PP«\§

[26) LEVEL«L+0

[27] L10:Q+(SQ+0av¢B)/114pB+0ORDER
G2

[28) PP+PP,,5Q4G2

[29) LEVEL<LEVEL,(+/SQ)pL+L+1

[30] =sLiuxi11xpQ

[(31) I+1

[32) Li1:J«I+1

[33) L12:+L13x1v/G2A,=T+G20Q(1];]
SUN G20QLJ];]

[38]) @¢2+(1 0 +pG2)0(,62),T

(35) L13:+L12x1(pQ)2J+J+1

[36] +L11x1(pQ)>T+I+1

(37 Li%:G2+(~(114062)eQ)462

[38) <+L10x10<x/pG2

[38) PP«(((pPP)tN),N)oPP

(¥0] Xe0

[v1) Lis:x;° 'SLEVELL1+K];"'

'";PRT 14X
[42) +LiSx(14pPP)>X+K+1
v

vsun{0lv

(1)
£2)
{3)
(€Y

(s}

sl
7]
[e)
(9]

V ReI SUM J;X;B;C;IN

+0x\(pJe I)upJe,J
IN«1vpRe(pI)p0

Xe1

S53:B+((TeIlX1)/IN) U(JeJIXD)/
IN

52:C+B U((IeI(BI)/IN) U(JeJ(B
1)/1I¥
+53x1(A/CeB)AA/BeC
+52,8+«C

S53:R[BleX
+S1x1(pR)2X+R10

[10) R+NORMALIZE R
v

Fig. 6.

v

[1]

1]
(2]
[3]

{sl

L ln i alele
WA e

LN
e e

[7)

(11
{2}
3]
[&]

[s]
(el

(1]

L]

<

v

v

veors(Qlv

coLs;T™;cC

IJ+8(2,
0,5xpIJ)pIJ+(I+TM/ ,RCC) ,J+(
THe TN <IN)/ ,CCo (N, M)pIN+ 1N

YNORNALIZE(C]V

S«NORMALIZE Vi;X;P;Q:T;IN
S+(pV)pKe1

Pel4QeINe oV
S[T«(VeV[1¢QY)/IN)+P
P+P+1

Q+(~QeT)/Q

*3x10<pQ

YORDERLDO]V

P+ORDER Y;I;J
P+10
J+(I«1)40Y
P«P,Y COVER I
+3x1J2Ie41
P+(2pJ)pP

veovER[O)V

S+«X COVER I;R;T:Q;:X
Rel/X0I13)
SeIwi(Ke1)toX
*Sx1lzpTe(X(I;]=2X)/
140X
S+SAA/Qe16Q+X(:T]
+3xR2Kk+X+1

VCONPRESS(D1v

COMPRESS ;T

T+10

K+1

Q+114p8
T+7,G2[B{X;111;)
XeX++/B(X;]
»4x 1 XS2!N
G2+(((pT)tN) X)pT

VYERTIO]Y

Z+PRT K;A;BiC;IN

Cet14IRN

Z*10

B«f/PPLX;)]

22, (", ((1,(2x"14p4)p 0 1)\
A~ALPEIL21+(PP(X;1=C)/INY}, ")
.t

H

*Yx 1 B2C+C+1

Z+7142

vyiolv

Z«X U Y
22042« ,(~XeX)/X]

SP and Associated Functions.

This work was done in conjunction with Air Force Contract F30602-70-C-0190 and NASA Grant
NGR 33-022-125.

NEREM 70-127

